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Abstract
This study investigates the nondiffractive propagation of sound waves in two-dimensional sonic
crystals consisting of rectangular rods with a slit. The plane wave expansion method is used to
calculate the equifrequency surfaces of sonic crystals with a square lattice. At certain
frequencies, straight contour lines in the equifrequency surfaces are found. That frequency is
strongly dependent on the geometric sizes of the rectangular rods. Further, the nondiffractive
propagation of the sound wave can be realized for omnidirectional incident angles, and the
properties can be applied to design novel acoustic devices.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

During the past decade, the investigation of acoustic or elastic
wave propagation in periodic composite materials, also called
sonic crystals, has received increased attention. Such artificial
crystals can exhibit acoustic or elastic band gaps in which
sound and vibration are forbidden in any direction. This is of
interest for applications such as elastic-acoustic waveguides,
filters, and noise control. The band gaps are dependent on the
filling fraction of the cylinders in the sonic crystal [1]. Further,
a giant band gap had been found in the two-dimensional
sonic crystal consisting of the air and water [2]. For the
two-dimensional sonic crystal consisting of square rods, the
acoustic band gaps can be controlled by rotating square
rods [3]. The sonic crystal composed of hollow steel cylinders
in a water background has been investigated [4]. Also, a
narrow pass band is found in the band gaps, and the frequency
of this narrow pass band can be tuned by varying the inner
radius of the cylindrical tube inclusions. In addition, this study
investigates the band structures of sonic crystals consisting
of rods with various shapes and orientations [5]. The wave
propagation in two-dimensional sonic crystals composed of a
square array of hollow dielectric elastomer cylinders in an air
background has also been studied [6]. The acoustic band gaps
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can be tuned by applying a voltage on the dielectric elastomer
tubes.

Recently, the negative refraction behavior of photonic
crystals has been discovered and has attracted much
attention [7]. In addition to the negative refraction behavior,
Kosaka et al has observed another outside-gap phenomenon
showing collimated light propagation insensitive to the
divergence of the incident beam [8]. This phenomenon
is called self-collimation. Both of these, the negative
refraction behaviors and the self-collimation phenomenon,
can be analyzed by using the equifrequency surfaces (EFSs)
of the photonic crystals. The integrated optics applications
and devices with the self-collimation in the photonic crystal
structures have been presented [9].

Analogous to the photonic crystals, the studies of acoustic
and elastic wave propagation in sonic crystals have received
increased attention. The negative refraction behavior of the
sonic crystals has been discussed and the EFSs are used
to predict the refraction direction [10, 11]. The dispersion
characteristics of two-dimensional sonic crystals consisting
of elliptic rods have also been reported [12]. By rotating
the elliptic rods, different structure factors are obtained that
vary the EFSs, and thus the refraction direction can then be
tuned. In addition, the acoustic imaging and collimation by
slabs of sonic crystals have been investigated [13]. In this
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Figure 1. (a) The Brillouin zone of a square lattice sonic crystal consisting of square rods with a slit, where a0 is the lattice constant. The inset
shows that clearances exist between the unit cell and adjacent unit cell. (b) The unit cell considered in the plane wave expansion method is
shown, where s is the width of the slit, α is orientation angle between the x and x ′ axes, and P denotes the position of the second rectangular
rod in the unit cell from the first rod at the coordinate origin.

research, it is shown that within the partial band gaps, the
acoustic waves tend to be collimated or guided into the
direction in which the propagation is allowed. The pass band
characteristics of wave propagation in two-dimensional thin
plate sonic crystals have been analyzed by using the iso-
frequency contour lines [14]. To clarify, the self-collimation
is also called subdiffractive propagation or nondiffractive
propagation, and is between the normal diffraction and
negative diffraction propagation [15, 16]. This phenomenon
has been predicted theoretically in sonic crystals [15] and
demonstrated experimentally in a two-dimensional sonic
crystal formed by a square array of steel cylinders immersed
in water [16].

To obtain the band gaps and the refraction direction of
a sonic crystal, a computation of the band structures and
the EFSs is required. Several popular methods have been
developed to calculate the band structures and the EFSs, i.e.,
(1) the plane wave expansion (PWE) method [2, 3], (2) the
multiple-scattering theory (MST) method [17] and (3) the finite
difference time domain (FDTD) method [18]. In addition, the
finite element method (FEM) is also used to calculate band
gaps and localized vibration modes for continuous and discrete
periodic structures [19].

In this paper, the PWE method is employed to obtain
the EFSs for finding the straight contour lines and the finite
element commercial software, COMSOL Multiphysics® [20],
is applied to simulate the pressure field in sonic crystals
consisting of rectangular rods with a slit in an air background.
Nondiffractive propagation for omnidirectional incident angles
is found in the sonic crystal at the frequencies of the straight
contours in the EFS. This research shows that the frequencies
of the straight contour line depend strongly on the length,
width of the rectangular rods and the width of the slit. The
frequencies of the straight contour lines can be controlled
by changing the parameters of the system. In addition, the
properties of nondiffractive propagation for omnidirectional
incident angles can be applied to design novel acoustic devices.

2. Numerical modeling

The two-dimensional periodic structure of the studied system
is shown in figure 1. System is composed of rectangular rods

with a slit in a fluid background. Since the fluid does not
allow a transverse wave to propagate, only the longitudinal
wave is only allowed. It is a good approximation to consider
the solid rods as fluid inclusions with very high stiffness and
specific mass. Then, the wave equation may be simplified as
follows [2]:

(C11)
−1 ∂2p

∂ t2
= ∇ · (ρ−1∇p) (1)

where p is the pressure, ρ is the mass density, C11 = ρc2
l is the

longitudinal elastic constant and cl is the longitudinal speed of
sound. The quantities ρ−1(r) and C−1

11 (r) can be expanded by
the Fourier series as given below [2]:

ρ−1(r) =
∑

G

σ(G)eiG·r,

and C−1
11 (r) =

∑

G

ζ(G)eiG·r (2)

where G are the 2D reciprocal lattice vectors. A periodic
system of rods (medium A) in a background of medium B is
proposed to be studied. The corresponding densities (elastic
constants) are ρA, ρB(C11A, C11B). The rectangular rod with a
slit can be taken as two rectangular rods. Then it is a simple
matter to show that

σ(G) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

2ρ−1
A f + ρ−1

B (1 − 2 f ) ≡ ρ−1, for G = 0,

(ρ−1
A − ρ−1

B )F(G)

+ e−iG·P(ρ−1
A − ρ−1

B )F(G)

≡ �(ρ−1)F(G), for G �= 0,
(3)

where f is the filling fraction of a rectangular rod and
F(G) is the structure factor. P denotes the position of the
second rectangular rod in the unit cell from the first rod at
the coordinate origin as shown in figure 1(b). An equation
analogous to equation (3) can be written for ζ(G) in terms of
C−1

11 . For a system of rectangular rods with orientation angle α

between the x and x ′ axis, F(G) can be written as:

F(G) = f
sin(G ′

x a/2)

G ′
x a/2

sin(G ′
yb/2)

G ′
yb/2

, (4)

G ′
x = Gx cos α + G y sin α,

G ′
y = −Gx sin α + G y cos α,

(5)
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where a is the length and b is the width of rectangular cross
section of rods. For square lattices with lattice constant of a0,
the filling fraction f is given by

f = ab

a2
0

. (6)

With the aid of the Bloch theorem, equations (2), and (3), the
eigenvalue equation is obtained as follows [2]:
∑

G′ �=G

F(G − G′)[�(ρ−1)(K + G) · (K + G′)

− �(C−1
11 )ω2]pK(G′) + [ρ−1|K + G|2 − C−1

11 ω2]pK(G′)
= 0. (7)

where K is a 2D Bloch vector, ω(K) and pK(G) are the
eigenvalues and eigenvectors, respectively.

The reciprocal lattice vectors are G = (2π/a0)(n�b1 +
m �b2), where �b1 = (1, 0), �b2 = (0, 1) for square lattices
with a lattice constant a0, and m, n are integers. In the PWE
calculations, a total of 625 plane waves (−12 � m, n � 12)

have been used. The band structure and EFS can be obtained
by solving the eigenvalue equation (7).

The COMSOL Multiphysics® software is adopted to
simulate the acoustic wave propagation in the sonic
crystals [20]. The equation used to analyze the acoustic wave
problems is expressed as,

−∇ · ∇p

ρ
= ω2

ρc2
l

p. (8)

By solving equation (8), the pressure field can be obtained in
the sonic crystal.

3. Results and discussion

A two-dimensional sonic crystals consisting of the square
steel rods with a slit in the air background is studied, where
ρsteel = 7800 kg m−3, ρair = 1.2 g m−3, csteel = 6100 m s−1,
cair = 343 m s−1 (sound velocity in air at 20 ◦C). The lattice
constant a0 of the sonic crystal is 10 mm, the length of the
rectangular rod is a = 7 mm, the width of the rectangular rod
is b = 2 mm, and the width of the slit is s = 3 mm. The two
rectangular rods and a slit form a 7 mm × 7 mm square rod.
Figure 2(b) shows its band structure, and the band structure of
the square rods (7 mm × 7 mm) without a slit is shown in the
figure 2(a). It can be observed that a band gap exists between
the first and second band in figure 2(a). A special band is found
in that band gap when the square rods of the sonic crystal have
a slit. That is the second band in figure 2(b). The EFS of the
second band is adopted to investigate the wave propagation in
the sonic crystal.

The EFS computed by the PWE method is used to predict
the refraction direction. The direction of group velocity, i.e.,
the refraction direction, is determined by the gradient of the
frequency in k-space, Vg = ∇kω(k). The refraction direction
can be obtained by analyzing the EFS [10–12]. The EFS of
the second band is shown in figure 3. The case of α = 0◦ is
plotted in figure 3(a). As can be observed, the EFS contours
are all curves; no straight line exists. In figure 3(b), the

Figure 2. (a) The band structure of the square rods (7 mm × 7 mm)
without a slit. (b) The band structure of the square rods with a slit
(a = 7 mm, b = 2 mm, and s = 3 mm).

orientation angle α is 45◦, and the contours of the frequencies
are approximately straight lines, especially at 21.5 kHz. The
frequency of the straight contour line becomes 22.49 kHz when
the width of the slit is 0.5 mm as shown in figure 3(c). That
is, the frequencies of the straight contour lines are dependent
on the geometric size of the rods in the sonic crystals. The
acoustic wave propagation in a sonic crystal is governed by
its dispersion surface. The wave is only allowed to propagate
along directions normal to the dispersion surface. Therefore,
the refraction direction is perpendicular to the straight contour
line of the EFSs. Figure 3(d) shows that the refraction
directions are all the same at 21.5 kHz. The dash–dot circle
and the solid lines stand for the EFS of air and the sonic crystal,
respectively. The arrow Kair in the dash–dot circle represents
the propagation direction of the incident wave, and is regarded
as the wavevector of air. The arrow Vg, the group velocity, is
the refraction direction of the acoustic wave in sonic crystals.
As the sonic crystal is arranged along the 
–M direction,
nondiffractive propagation of the sound wave can be realized
for all incident angles and the refraction angles are always zero.

Note that the certain frequency contour lines of the EFSs
are square for the sonic crystal consisting of the circle steel
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Figure 3. The EFSs of the second band for (a) α = 0◦ and (b) α = 45◦ are shown, where a = 7, b = 2, and s = 3 mm. (a) shows that all
contour line are curve lines. In (b), the 21.5 kHz contour line is approximately a straight line. (c) shows the EFSs of the second band for
α = 45◦, a = 7 mm, b = 3.25 mm, and s = 0.5 mm. The 22.49 kHz contour line is approximately a straight line. (d) shows that the
refraction directions are the same at 21.5 kHz. The arrow Vg is the refraction direction of the acoustic wave in sonic crystals.

rods in a fluid background. The phenomena of nondiffractive
propagation appear only in a small range of incident angles
on the flat segments [15, 16]. However, there exist negative
refractions and partial band gaps for large incident angles. In
the present investigation, the analysis of the EFSs shows that
the refraction direction is independent of the incident angles
at the frequency of the straight contour line. Nondiffractive
propagation and a 0◦ refraction angle are observed for
omnidirectional incident angles in the sonic crystal arranged
along the 
–M direction. This phenomenon is sensitive to
the frequency of the incident wave. It can be seen that the
straight EFS contours occur only at the frequency of 21.5 kHz
in figure 3(b). The contours of the other frequencies are all
curved lines and not straight enough to achieve nondiffractive
propagation for omnidirectional incident angles.

Figure 4 shows that the frequencies of the straight contour
lines are a function of the length of the rectangular rods a

for different width of the slits s at 2b + s = 7 mm. It
is revealed that the frequencies of the straight contour lines
decrease linearly as the length of a increases. On the other
hand, figure 5 shows that the frequencies of the straight contour
lines are a function of the length of 2b + s for different width
of the slits s at a = 7 mm. The frequencies of straight contour
lines increase linearly as the length of 2b + s increases. The
frequencies are proportional to the length of a and 2b + s.
The variations of the frequencies with a are greater than with
2b + s. It is worth noticing that the straight contour lines of the
EFSs cannot be found for smaller lengths of a and 2b + s. For
example, at s = 0.5 mm and 2b+s = 7 mm, a straight contour
line of the EFS cannot be found if the length of the rectangular
rods a < 6.85 mm.

Moreover, we can observe the straight contour lines of the
EFSs in the cases at a = 7 mm and 2b + s > 7 mm. Figure 6
shows that the frequency of the straight contour lines of the
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Figure 4. The frequencies of straight contour lines are a function of
the length of the rectangular rods, a, and the width of the slits, s, at
2b + s = 7 mm.

Figure 5. The frequencies of straight contour lines are a function of
the length 2b + s and the width of the slits, s, at a = 7 mm.

EFS are a function of the width of a slit for different lengths of
2b + s at a = 7 mm. One can easily find that the frequency
of straight contour lines decreases gradually with an increase
of the width of a slit at a certain value of 2b + s until a critical
value and then increases. For the same width of a slit, the larger
the length 2b+s, the higher is the frequency of straight contour
lines. The phenomena of the straight contour lines was studied
until the width of the rectangular rods b reduced to 2 mm. Note
that, for 2b+s = 9 mm, a straight contour line cannot be found
if s > 3 mm i.e. b < 3 mm. The parameters of a, 2b + s, and s
can be controlled to tune the frequency of the straight contour
line.

The FEM is also used to simulate wave propagations
in the sonic crystal. A square lattice slab with eight layers
is investigated. The sonic crystal (a0 = 10 mm, a =
7 mm, b = 2 mm, and s = 3 mm) of a slab arranged
in the 
–M direction with 8 layers is used in this study.
It is noted that the frequency of the acoustic wave is taken
to be 21.5 kHz for all simulations in the this report. The

Figure 6. The frequencies for the straight contour lines of the EFSs
are a function of the width of the silt, s, and the width of 2b + s at
a = 7 mm.

Figure 7. The pressure fields of simulation at different incident angle
(a) 0◦, (b) 45◦ and (c) 80◦ are displayed, respectively. All the acoustic
waves propagate in the 0◦ refraction direction in the sonic crystal.

pressure field of the acoustic wave propagated through the
crystal is shown in figure 7. We can see that there is
obvious refraction behavior for the waves of 45◦ and 80◦
incident angles. All the acoustic waves propagate in the
0◦ refraction direction in the sonic crystal, and the direction
of the transmitted waves is parallel to the incident wave.
The refraction angle at 21.5 kHz is zero for omnidirectional
incident angles. It also confirms that the direction of refraction
is the same as that previously predicted by the EFS in
figure 3(d). This sonic crystal is useful as a waveguide for
omnidirectional incident directions in the absence of defects.
Figure 8 shows a simulation of the acoustic wave propagation
without and with the sonic crystal. It can be seen that
the acoustic waves at 21.5 kHz radiate from the source in
the homogeneous media in figure 8(a), and the width of
the wave beam broadens appreciably over the propagation
distance. The frequency of incident waves is 21.5 kHz and
18 kHz in figures 8(b) and (c), respectively. The acoustic
wave beam propagates through the crystal without a visible
divergence, as shown in figure 8(b). In figure 8(c), the wave
beam propagates in the sonic crystal, which is the same as
figure 8(b), and the wave beam broadens slightly over the
propagation distance. The effect of nondiffractive propagation
at 21.5 kHz is convincing. Moreover, the frequencies of
the nondiffractive propagation and the waveguide can be
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Figure 8. (a) The acoustic waves propagating in a homogeneous
medium without the sonic crystal. (b) The acoustic waves at 21.5
kHz propagate in the sonic crystal. The acoustic wave beam
propagates without a visible divergence. (c) The acoustic waves at 18
kHz propagate in the sonic crystal. The width of the wave beam
broadens slightly over the propagation distance.

controlled by adjusting the size of the rectangular rods of the
sonic crystal.

4. Conclusion

The nondiffractive propagation of the sound wave was studied
in the two-dimensional sonic crystal. The sonic crystals are
composed of rectangular rods with a slit. The EFSs of this
sonic crystal have straight contour lines for certain frequencies.
The refracted acoustic waves can propagate with 0◦ refraction
angle for all incident angles in the proposed sonic crystals. The
frequency of the straight contour line is dependent on the size
of the rectangular rods and slits. By varying the size of the
rectangular rods such as the length, width of rectangular rods,
and the width of a slit, the frequency of the straight contour
line can be selected. Tunable sonic crystals composed of a
functional material will be the focus of our future studies.

There the frequencies of the straight contour line can be
controlled by applying an electric voltage.
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[15] Pérez-Arjona I, Sánchez-Morcillo V J, Redondo J,

Espinosa V and Staliunas K 2007 Phys. Rev. B 75 014304
[16] Espinosa V, Sánchez-Morcillo V J, Staliunas K,
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